About AICE1004

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk

Homepage angms.science

Version: September 28, 2024 First draft: July 6, 2023 Why math Instructors Syllabus Time, Assessment and Contact 12-week tentative plan Example exam question Computer Readings After AICE1004

Before AICE1004

Hardest module this sem

- Math is hard
- Math is abstract
- Math needs memory
- Math needs understanding
- Math needs imagination
- Math needs practise

the most important module

ex falso quodlibet reductio ad absurdum $((P \Rightarrow \bot) \land P) \Rightarrow \neg P$ $\forall X \left[X \neq \varnothing \implies \exists f : X \to \bigcup X \ \forall A \in X \left(f(A) \in A \right) \right]$ AOB B $= \aleph_{\alpha+1}$ $\lim_{x \to x_0} f(x) \stackrel{\Delta}{=} \forall \epsilon > 0, \exists \delta > 0$ df $|x - x_0| < \delta$ dx $|f(x) - f(x_0)| < \epsilon$ $f:[0,1] \to \mathbb{R}, f \in C^0$ Mm $\forall \epsilon > 0, \exists p(x) \text{ s.t. } |f(x) - p(x)| < \epsilon$ $a_{11}x_1 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + \cdots + a_{mn}x_n = b_m$ $T: V \to W^{\dim(\operatorname{Im}T)} + \dim(\operatorname{null}T) = \dim(\operatorname{dom}T)$ $\operatorname{Im} T \oplus \operatorname{Ker} T = V$ $\mathbf{e}_i \otimes \mathbf{e}_i$ $AB = 0 \iff \operatorname{Im} B \subset \operatorname{Ker} A$

AI image generation

Input: "Students studying mathematics"

AI generate:

Why math is important you need math to understand why AI works

$$\begin{split} \mu_{t}(\mathbf{x}_{n,t}) &= \mu_{t}(\mathbf{x}_{n}) \prod_{i=1}^{n} \mu_{t}(\mathbf{x}_{n-1}|\mathbf{x}_{n}), \quad \mu_{t}(\mathbf{x}_{n-1}|\mathbf{x}_{n}) &= \mathcal{N}[\mathbf{x}_{n-1};\mu_{t}(\mathbf{x}_{n-1}|\mathbf{x}_{n-$$

Your instructors

- Andersen (Man Shun) Ang (Module leader)
- ► Website: angms.science
- Math geek
 Optimization Theorist
 Your final boss this semester

$$\begin{cases} v \in \mathbb{R}^n & \exists x_k \to x, f(x_k) \to f(x) \\ v_k \in \partial f(x_k), \lim_{k \to \infty} v_k = v \end{cases}$$

► Office: Building 32 Room 3057

- Zhanxing Zhu
- Website: zhanxingzhu.github.io

$$\mathcal{L}\left(N, D, T; f(x; \theta)\right) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + \frac{C}{T^{\gamma}}$$

s.t. $f(x; \theta) = f_1 \circ f_2 \circ \cdots \circ f_L(x)$

Office: Building 32 Room 3XXX

Syllabus

Part 1. math of "formality" Logic & set

Proposition, truth, $\mathrm{Id}, \top, \bot, \neg$ $\land, \lor, \overline{\land}, \underline{\lor}, \forall, \exists, \Longrightarrow, \longleftrightarrow$ $\vdash, \models, \text{ proofs}$

```
\begin{split} \{\}, \in , \notin, \subset, \cap, \cup, \backslash, \Delta, A^c, \varnothing, \\ 2^S, |S|, \aleph, \infty, \\ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}, \mathbb{C} \\ \times, R, [\ ], / \sim \end{split}
```

```
dom, codom, Img, 1 \rightarrow 1, onto, 1-1
```

LEAN-4

Part 2. math of "change" Calculus

Number, elementary functions, inequality

calculus: differentiation, integration

analysis (calculus at proof level): sequence, definition of limit, continuity, L'Hospital rule, Taylor series, Riemann sum

```
Wolfram Alpha (Lab 1 M1)
```

Part 3. math of "structure" Linear algebra

Matrix-vector algebra, $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$, Gaussian elimination

inverse, eigendecomposition, characteristic equation, determinant

Abstract linear algebra: combination, span, column space, independence, orthogonality, rank, dimension, kernel, quotient

NumPy (Lab 2 M2)

AICE1004 Mathematics for Artificial Intelligence and Computer Engineering (I)

Time commitment: 150 hours

Lecture	32h
Independent study	108h
Laboratories	10h

Assessment (School rule: $\geq 40\%$ to pass)

Computing Laboratories (lab)	5%
Coursework (mid-term test)	35%
Exam	60%

line platform: <mark>Moodle</mark> tps://moodle.ecs.soton.ac.uk/l
Lecture notes Exercises Announcement Lab Ask question here so that everybody can see it
cture
Monday 11:00-11:55, 27/2001 Thursday 09:00-10:55, 35/1005 Friday 10:00-11:55, 27/2001 Map https://maps.southampton.ac.uk/

Useful websites for new students

- SUSSED https://sotonac.sharepoint.com/
- StudentHub https://www.southampton.ac.uk/studentservices/index.page
 - Information
 - ► fees, finance, accommodation
 - wellbeing, disability, careers
 - course administration, change program
- ► School rule

 $\label{eq:linear} https://www.southampton.ac.uk/about/governance/regulations-policies/taught-students/general/results-ug-integrated-masters \\ 9.1 Mark Scheme: Pass := <math display="inline">\geq 40$

- https://data.soton.ac.uk/
 - ► Map, Building
 - Which week it is , Term date, University Calendar
- https://timetable.soton.ac.uk
- https://moodle.ecs.soton.ac.uk/login

12-week tentative plan

<i>i</i> a mlam	w	Торі	c, by	Cor	ntent										Assessment
/e plan					positio	n, truth	, Id, ⊺	-,⊥,·	$\neg, \land,$	$\lor, \overline{\land},$	$\underline{\vee}, \forall,$	$, \exists, \implies, \Leftarrow$	⇒ ,⊢	, ⊨, proof	
	2	Set,	А	{}	$\{\}, \in, \notin, \subset, \cap, \cup, \varnothing, \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}, \times, \mathit{R}, 1 \rightarrow 1 \text{, onto, } 1\text{-}1, 2^{A}, S , \aleph$							$^{4}, S ,\mathbf{\aleph}$	lab1 (2.5%)		
	3	Calc	ulus, A	Nur	nber sy	stem, e	lementa	ary fund	tions,						
	4	Calc	ulus, A	Lim	Limit, continuity, derivative										
	5	Calc	ulus, A	Diff	Differentiation, Taylor series										
	6	Calc	ulus, A	ant	iderivat	ive, int	egratior	, Riem	ann su	m, Fun	dament	tal theorem of cal	culus		mid-term (35%)
	7	LA,	z	Vec	tor and	matrix	algebra	a, their	geome	tric me	aning				
	8	LA,	z	Line	ear syst	em, Ga	ussian l	Elimina	tion, tł	ieir geo	metric	meaning			
	9	LA,	z	Inve	erse, de	t, chara	acteristi	c equat	ion, Ei	genvalu	e, eige	envector			
	10	LA,	Z	vec	tor spa	ce: con	ıb, span	, Col, t	oasis, d	im, ran	k, ker,	quotient			
	11	Revi	sion, A	revi	sion of	week 1	- week	6							lab2(2.5%)
	12	Revi	sion, Z	revi	sion of	week 7	- week	10							
															Exam (60%)
	00	tobe	r 2024	1		Nove	mber	202	4	Decer	mber	12024 Janu	ary	2025	
	Mon	7	14	21	28	4	11	18	25	2	9	16 23 6	13	20	
	Tue 1	8	15	22	29	5	12	19	26	3	10	<mark>17</mark> 24 7	14	21	
	Wed 2	9	16	23	30	6	13	20	27	4	11	<mark>18</mark> 25 <u>1</u> 8	15	22	
	Thu 3	10	17	24	31	7	14	21	28	5	12	19 26 2 9	16	23	
	Fri 4	11	18	25	1	8	15	22	29	6	13	20 27 3 10	17	24	
	Sat 5	12	19	26	2	9	16	23	30	7	14	21 28 4 11	18	25	
	Sun 6	13	20	27	3	10	17	24	1	8	15	22 29 5 12	19	26	
Semester	Wks 1	2	3	4	5	6	7	8	9	10	11	12	Ex	Ex	

Good news

Bad news

No homework (tons of exercises in MadBook) Mid-term in Week 6 & Final exam (Mock midterm/exam will be provided)

You probably learned Calculus & Linear Algebra

& We will look at them at abstract level & deeper level

So you are familiar with it

We do proof

Example exam question

Solve the following system of equations, using matrix notation, and the Gaussian elimination plus back-substitution method.

x	+	y	—	z	=	1
2x	+	y	_	z	=	6
3x	+	7y	_	6z	=	-1

Suggested solution Step 1. Construct the augmented matrix

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 1 & -1 & 6 \\ 3 & 7 & -6 & -1 \end{bmatrix}$$

Step 2.
$$R_2 \leftarrow R_2 - 2R_1$$
 and $R_3 \leftarrow R_3 - 3R_1$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & -1 & 1 & 4 \\ 0 & 4 & -3 & -4 \end{bmatrix}$$
 $R_3 \leftarrow R_3 + 4R_2$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & -1 & 1 & 4 \\ 0 & 0 & 1 & 12 \end{bmatrix}$$
Step 3. We have
$$x + y - z = 1$$

$$- y + z = 4$$

$$z = 12$$

Using back-substitution gives (x, y, z) = (5, 8, 12).

Example exam question

Given a matrix
$$oldsymbol{A} = egin{bmatrix} 1 & 2 \ 3 & -4 \end{bmatrix}$$
.

The eigenvalues of A are (there are more than one option that is correct, you get one point by picking all the correct options, you get zero point otherwise):

Solution: (a) and (d)

$$\begin{aligned} \det(\boldsymbol{A} - \lambda \boldsymbol{I}) &= 0\\ \Leftrightarrow \quad \begin{vmatrix} 1 - \lambda & 2 \\ 3 & -4 - \lambda \end{vmatrix} &= 0\\ \Leftrightarrow \quad (1 - \lambda)(-4 - \lambda) - 2 \cdot 3 &= 0\\ \Leftrightarrow \quad (\lambda - 1)(\lambda + 4) - 6 &= 0\\ \Leftrightarrow \quad \lambda^2 + 3\lambda - 10 &= 0\\ \Leftrightarrow \quad (\lambda - 2)(\lambda + 5) &= 0\\ \Leftrightarrow \quad \lambda \in \{+2, -5\}\end{aligned}$$

Marking:

Otherwise 0 point

Assessment (School rule: > 40% to pass)

- L_1 : result of lab1
 2.5%

 L_2 : result of lab2
 2.5%

 T: mid-term test
 35%

 E: exam
 60%
- \blacktriangleright G: grade
- Example: appear in all the labs, test and exam
- ► Example: missed lab1
- ► Example: missed test
- ► Example: missed lab1 and test
- ► Example: missed lab1, lab2 and test
- ► Example: missed exam

 $G = 0.025L_2 + 0.35T + 0.625E$ $G = 0.025L_1 + 0.025L_2 + 0.95E$ $G = 0.025L_2 + 0.975E$ G = E $G = 0.025L_1 + 0.025L_2 + 0.35T$

 $G = 0.025L_1 + 0.025L_2 + 0.35T + 0.6E.$

► Fun fact: you can actually use one equation to express all the situations above

Lab M0 Logic: LEAN 4.0

Lab M1 Calculus: Wolfam Alpha (Mathematica)

Lab M2 Linear Algebra: Python (NumPy) / MATLAB

Readings: Lecture notes and MadBookPro are sufficient

- Make your own notes!
- ► Want more?

►	Discrete mathematics and its applications by Kenneth H. Rosen Logic and Proofs, Sets, Functions, Matrices	QA39 ROS
►	Calculus : a complete course (10th ed) by Robert Adams & Christopher Essex Chapter 1,2,5,6,10	QA303 ADA
►	Calculus (3rd ed) by Michael Spivak First 400 pages	QA303 SPI
►	Schaum's outlines calculus Chapter 1-35 or the whole book	QA303 AYR, library has ebook
►	Schaum's outlines, advanced calculus Chapter 3,4,5,7	QA303 SPI, library has ebook
•	Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares by Stephen Boyd Free pdf https://web.stanford.edu/~boyd/vmls/vmls.pdf Slide by Boyd & Vandenberghe https://web.stanford.edu/~boyd/vmls/vmls-slides.pdf	and Lieven Vandenberghe
►	Introduction to linear algebra by Gilbert Strang Solving linear equations, Vector spaces and subspaces, Orthogonality, Determinants, Eigenvalue	QA184.2 STR s and eigenvectors
►	Schaum's outlines, Linear algebra Chapter 1,2,3,4,8	QA251 LIP, library has ebook

04/25/24

AICE1004 | University of Southampton

AICE1004 (Academic Year 2024/25)

Reading for AICE1004

7 items

Discrete mathematics and its applications - Kenneth H. Rosen, 2019 Book | Additional

Schaum's Outline of Discrete Mathematics (3rd Edition) - Seymour Lipschutz, Marc Lipson, 2007

Book | Additional

Calculus : a complete course - Robert A. Adams, Christopher Essex, 2022 Book | Additional

Calculus - Frank Ayres, Elliott Mendelson, ©2013

Book | Additional

Advanced calculus - Robert C. Wrede, Murray R. Spiegel, ©2010 Book | Additional

Introduction to linear algebra - Gilbert Strang, 2016 Book | Additional

Linear algebra - Seymour Lipschutz, Marc Lipson, 2013 Book | Additional

YouTube

► Essence of calculus by 3Blue1Brown

https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

Essence of linear algebra by 3Blue1Brown https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Video 1 - 7 in Vectors for multi-variable calculus by Michael Penn https://www.youtube.com/playlist?list=PL22w63XsKjqyC3bWVd5EjGEVN9pqq55yF

Techniques of Integration by Michael Penn https://www.youtube.com/playlist?list=PL22w63XsKjqy_Hg10PAhSNsTCx84UpARt The remaining slides are used to warn you that math is hard

HARDEST module this sem

- Math is hard
- Math is abstract
- Math needs memory
- Math needs understanding
- Math needs imagination
- Math needs practise

```
the most important module in AI
```

In lecturer Your eye/ear: oh I understand! Your brain/hand: no you don't!

Watch somebody doing math \neq learning

you do math \neq learning

(you do math) $\land ((get it correct) \lor (get it wrong but understand why wrong)) = learning$

Warning: Math needs memory

Math is like $A \rightarrow B \rightarrow C \rightarrow D \rightarrow \dots$

If you forgot A, you can't proceed to B, C, ...

Warning: Math needs imagination

Math is abstract, pure memory is useless

you don't know what is it if you can't image a picture

Example. Find the eigenvector of $\begin{bmatrix} 1 & 2\\ 3 & -4 \end{bmatrix}$ you first need to know what are *vectors*, *eigenvalues*, so on Example. det $\begin{bmatrix} 1 & 2\\ 3 & -4 \end{bmatrix}$ = the area of parallelogram of $\begin{bmatrix} 1\\ 3 \end{bmatrix}$, $\begin{bmatrix} 2\\ -4 \end{bmatrix}$

Warning: Math needs logical thinking

Math is structural: knowing a bunch of unstructured information is useless

If you can't form a "logic chain" in your head, you will fail

Example. Scaling a row by a constant multiplies the determinant by that constant.

If we scale the first row of
$$\begin{bmatrix} -4 & 3 & 3 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$
, then det
$$\begin{bmatrix} -8 & 6 & 6 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix} = 2 \det \begin{bmatrix} -4 & 3 & 3 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$
.
det
$$\begin{bmatrix} -8 & 6 & 6 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix} = \det \begin{pmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -4 & 3 & 3 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

$$= \det \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \det \begin{bmatrix} -4 & 3 & 3 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$
 based on $\det(AB) = (\det A)(\det B)$

$$= 2 \det \begin{bmatrix} -4 & 3 & 3 \\ 8 & 7 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$
 det of diagonal matrix is the product of diagonal

High school / A-level / IB / GCSE / blablabla math are nothing

Bad math in high school: No worry, work hard will be ok

Good math in high school: Nothing special, you are only δ -better

¹this number is the number of vertices of a "math knowledge graph"

In math you don't understand things, you just get used to them — von Neumann

See a new concept, you don't feel "what's going on" until you do a tons of examples

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \implies A \oplus B = \begin{bmatrix} a & b & c & d \\ c & d & e & f \\ g & h \end{bmatrix}$$
$$A = \begin{bmatrix} a & b \end{bmatrix}, B = \begin{bmatrix} e \\ f \end{bmatrix} \implies A \oplus B = \begin{bmatrix} a & b & e \\ & f \end{bmatrix}$$
$$A = \begin{bmatrix} a & b \end{bmatrix}, B = \begin{bmatrix} e & f \end{bmatrix} \implies A \oplus B = \begin{bmatrix} a & b & e & f \end{bmatrix}$$
$$A = \begin{bmatrix} a & b \end{bmatrix}, B = \begin{bmatrix} e & f \end{bmatrix} \implies A \oplus B = \begin{bmatrix} a & b & e & f \end{bmatrix}$$
$$A = \begin{bmatrix} a \\ b \end{bmatrix}, B = \begin{bmatrix} e & f \end{bmatrix} \implies A \oplus B = \begin{bmatrix} a & b & e & f \end{bmatrix}$$

von Neumann is know as the "father of computer", but he is also a math god: C*-algebra, von Neumann mutual information, von Neumann decomposition, von Neumann spectral theorem

Math is crazy

- \blacktriangleright Cantor's diagonal prove of ∞
- Godel's completeness Theorem
- Godel-Maltsev Compactness Theorem of 1st-order logic
- Zermelo-Fraenkel set theory and Axiom of Choice
- Zorn's Lemma of partially ordered set
- Axioms of integer and Axioms of real number
- Bolzano-Weierstrass Theorem
- Robinson's Transfer Principle and Hyper-reals
- Weierstrass Approximation Theorem of continuous function
- Fermat's rule, Rolle's Theorem, Lagrange Theorem, Cauchy Theorem
- Fundamental Theorem of calculus
- Rank-null Theorem
- Fundamental Theorem of Linear Algebra
- Fundamental Homomorphism Theorem of vector space

Math is crazy (things we may talk about in the course)

- Not everything can be a set, for example $R := \{x : x \in x\}$
- There are more real numbers in [0,1] than all integers
- There are things being "too large" to be a set, for example $C = \{\aleph_0, \aleph_1, \aleph_2, ...\}$
- \blacktriangleright The sum of all real number in the interval [0,1] is impossible to compute
- Some function is impossible to differentiate

•
$$\frac{\mathrm{d}^{0.5}}{\mathrm{d}^{0.5}x}x = ????$$

•
$$\int \frac{1}{x} dx = \ln |x| + C$$
 is wrong.

• Some function is impossible to integrate, for example $\int_0^1 \sin\left(\frac{1}{x}\right) dx$

All vector space has a basis

Example: proving converge of sequence using logic A sequence $\{s_n\} \in \mathbb{R}$ converges to $L \in \mathbb{R}$ if and only if

$$(\forall \epsilon > 0)(\exists K \in \mathbb{N}) \Big(\forall n \ge K \implies |s_n - L| < \epsilon \Big)$$

Now prove
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 using logic

Prove 0.99999999... = 1

Example: calculus

You may think calculus is easy: $\int x^5 dx = \frac{1}{6}x^6 + C$

How about: let a sequence $f_n(x) = \cos(nx)$

 $f_1(x) = \cos x, \ f_2(x) = \cos(2x), \ f_3(x) = \cos(3x), \dots$

Now,

$$\int \lim_{n \to \infty} f_n(x) dx \stackrel{?}{=} \lim_{n \to \infty} \int f_n(x) dx$$

- Does left hand side exists?
- Does right hand side exists?
- Does the equality holds?
- Why is it true?
- Why is it not true?
- What if $\int f^{-1}(x) dx$?

Example: abstract linear algebra (You will learn this)

Invertible matrix theorem If $A \in \mathbb{R}^{n \times n}$, then following are all equivalent (either all true or all false for A)

- $1 \quad oldsymbol{A}$ is non-singular $\iff oldsymbol{A}^{-1}$ exists
- $\iff 2a$ A has left inverse under matrix multiplication \iff there exists B such that BA = I
- $\iff 2b$ A has right inverse under matrix multiplication \iff there exists C such that AC = I
- \iff 2c A has inverse under matrix multiplication \iff there exists D such that DA = AD = I
- $\iff 3a$ the reduced row-echelon form of $oldsymbol{A}$ is $oldsymbol{I}_n$
- $\iff 3b$ the reduced column-echelon form of $oldsymbol{A}$ is $oldsymbol{I}_n$
- $\iff 3c \quad A \text{ has } n \text{ pivots}$
- $\iff 3d$ A can be expressed as a product of elementary matrices $\iff A = E_1 E_2 \cdots$
- \iff 4a $A: x \mapsto Ax$ is surjective \iff there exists at least one x that solves Ax = b
- $\iff 4b \quad A: x \mapsto Ax$ is injective \iff there exists at most one x that solves Ax = b
- $\iff 4c \quad A: x \mapsto Ax$ is bijective \iff there exists exactly one x that solves Ax = b
- $\iff 4d \quad Ax = b$ is consistent for all $b \in \mathbb{R}^n$
- $\iff 5a$ columns of $oldsymbol{A}$ are linearly independent
- $\iff 5b$ rows of $oldsymbol{A}$ are linearly independent
- $\iff 5c$ columns of \boldsymbol{A} span \mathbb{R}^n
- $\iff 5d$ rows of \boldsymbol{A} span \mathbb{R}^n
- $\iff 5e$ columns of \boldsymbol{A} form a basis for \mathbb{R}^n
- $\iff 5f$ rows of **A** form a basis for \mathbb{R}^n
- $\iff 6a \quad A \text{ has rank } n$
- $\iff 6b \quad A \text{ has nullity } 0$
- $\iff 6c \quad Ax = 0$ has only the trivial solution $x = 0 \iff \ker A = \{0_n\}$
- $\iff 6d$ the orthogonal complement of the null space of $oldsymbol{A}$ is \mathbb{R}^n
- $\iff 6e$ the orthogonal complement of the row space of $oldsymbol{A}$ is $oldsymbol{0}_n$
- $\iff 6f$ the range of \boldsymbol{A} is \mathbb{R}^n
- \iff $7a \quad \det(\mathbf{A}) \neq 0$
- $\iff ~7b~$ the eigenvalues of $oldsymbol{A}$ contains no zero $\iff 0$ is not an eigenvalue of $oldsymbol{A}$
- \iff 8a A^{\top} is invertible
- $\iff 8b \quad \mathbf{A}^{\top}\mathbf{A}$ is invertible

If you want even more exercises

- (3193) Problems in Mathematical Analysis Boris Demidovich
- 3000 Solved Problems in Calculus Elliot Mendelson
- 3000 Solved Problems in Linear Algebra Lipschutz Seymour
- How to study mathematics
 Pattern Recognition
 Math is unlike other subject, all problems are unique, problem will not repeat, this is why memorization is useless in math

Sec.	12] Miscellaneous Exam	nples o	n Integration 137
146	6.	$\int \sin\left(\frac{\pi}{4}-x\right)\sin\left(\frac{\pi}{4}+x\right)dx.$	1484.	$\int \sinh x \cosh x dx.$
146	7.	$\int \tan^3\left(\frac{x}{2}+\frac{\pi}{4}\right) dx.$	1485.	$\int \frac{\sinh \sqrt{1-x}}{\sqrt{1-x}} dx.$
146	8.	$\int \frac{dx}{2\sin x + 3\cos x - 5} \cdot$	1486.	$\int \frac{\sinh x \cosh x}{\sinh^2 x + \cosh^2 x} dx.$
146	9.	$\int \frac{dx}{2+3\cos^2 x} \cdot$	1487.	$\int \frac{x}{\sinh^2 x} dx.$
147	0.	$\int \frac{dx}{\cos^2 x + 2\sin x \cos x + 2\sin^2 x} \cdot$	1488.	$\int \frac{dx}{e^{2x}-2e^x} \cdot$
147	1.	$\int \frac{dx}{\sin x \sin 2x} .$	1489.	$\int \frac{e^x}{e^{2x}-6e^x+13}dx.$
147:	2.	$\int \frac{dx}{(2+\cos x)(3+\cos x)} .$	1490.	$\int \frac{e^{2x}}{1} dx.$
1473	3.	$\int \frac{\sec^2 x}{\sqrt{\tan^2 x + 4\tan x + 1}} dx.$		$\int_{C} \frac{(e^{x}+1)^{\overline{4}}}{(e^{x}+1)^{\overline{4}}}$
1474	4.	$\int \frac{\cos ax}{\sqrt{x^2 + \sin^2 ax}} dx.$	1491.	$\int \frac{1}{1-4^x} dx.$
1475	5.	$\int \sqrt{a^2 + \sin^2 ax}$	1492.	$\int (x^2 - 1) 10^{-2x} dx.$
1476	6	$\int \cos^2 3x^2 \int x \sin^2 x dx$	1493.	$\int V e^x + 1 dx$. Carctanx
	-	futuri du	1494.	$\int \frac{dx}{x^2} dx$
147	ί.	$\int x^2 e^x dx.$	1495.	$\int x^{*} \operatorname{arc} \sin \frac{1}{x} dx.$
1478	8.	$\int xe^{2x} dx.$	1496.	$\int \cos(\ln x) dx$
1479	э.	$\int x^2 \ln \sqrt{1-x} dx.$	1407	$\int (u^{1} - 2u) \sin E u du$
1480	0.	$\int \frac{x \arctan x}{dx} dx.$	1497.	$\int (x^2 - 3x) \sin 3x dx.$
		$\int V 1 + x^2$	1498.	$\int x \arctan(2x+3) dx$.
1481	۱.	$\int \sin^2 \frac{x}{2} \cos \frac{\pi}{2} dx.$	1499.	$\int \operatorname{arc} \sin \sqrt{x} dx$.
482	2.	$\int \frac{dx}{(\sin x + \cos x)^2} \cdot$	1500.	$\int x dx.$
483	3.	$\int \frac{dx}{(\tan x+1)\sin^2 x} \cdot$		

What comes after AICE1004?

- ► Vector calculus (AICE1008 Math II) ⊂ Linear algebra ⊕ Calculus
- ► Scientific Computing (AICE2001) ≈ Linear Algebra II
- Optimization (COMP6260)
 queen of applied math

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix}, \quad \oint \quad , \iint , \quad (\nabla A) \cdot \mathbf{F}$$
$$G = (Df)^\top Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_2} \end{bmatrix}$$
$$d\mathbf{u} \otimes d\mathbf{v}, \quad d\mathbf{u} \wedge d\mathbf{v}$$

How to study math

- Bring pen, papers & computer,
 - Do math in all lectures
 - Drop notes in lectures
 - make your OWN notes
- Watch YouTube math videos
- Develop your "math brain" Make sure you
 - fully understand basic concepts without needing to think
 - get VERY comfortable with the terminology
- study to FULL comprehension & be able to APPLY takes PATIENCE Lectures are only 32 hours, you bear the responsibility of that 108 hours²

²https://www.southampton.ac.uk/courses/modules/aice1004

Things not-a-must-to-do but good for you

Learn LaTeX

Learn Beamer

Learn Markdown

My teaching style: no slide.

What's next: revision of high school math