Coordinate Gradient Descent

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft : November, 20, 2018 Last update : November 20, 2018

2 CD with exact component minimization

Problem setting : quadratic problem

$$\begin{aligned} (\mathcal{P}): \text{ given full rank } \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^n, \text{ find } \mathbf{x} \in \mathcal{C} \subset \mathbb{R}^n \text{ by solving} \\ \mathbf{x}:= \mathop{\arg\min}_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \frac{1}{2} \mathbf{x}^\top \mathbf{Q}\mathbf{x} - \mathbf{p}^\top \mathbf{x} + c. \end{aligned}$$
where $\mathbf{Q} = \mathbf{A}^\top \mathbf{A}, \ \mathbf{p} = \mathbf{A}^\top \mathbf{b}.$

These slides : on using coordinate descent to solve (\mathcal{P}) .

Full gradient of
$$f$$
 is $\nabla f(\mathbf{x}) = \mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}).$

Full gradient is used when we update the whole vector ${\bf x}$ in the form of ${\bf x}={\bf x}+t\nabla f({\bf x}).$

Suppose now we are interested in updating the i^{th} component of \mathbf{x} . i.e., we don't care about the update of the j^{th} component of \mathbf{x} with $j \neq i$.

That is, we consider a sub-problem of (\mathcal{P}) , such sub-problem is the minimization problem (\mathcal{P}) that only focus on x_i .

Component-wise gradient update

Now we are interested in the component-wise update

 $x_i = \mathsf{Update}(x_i; f, \mathbf{x}_{\neq i}),$

where $\mathbf{x}_{\neq i}$ is vector \mathbf{x} without the *i*th component.

Such equation means we use the information of f and other components to update x_i .

There are various possible formulations of Update(.). Suppose we use gradient descent on \mathbf{x}_i , then the component-wise gradient update will be

$$x_i = x_i - t_i \nabla_i f(x_i; \mathbf{x}_{\neq i}),$$

where $\nabla_i f(x_i; \mathbf{x}_{\neq i})$ is the partial gradient with the form

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top (\mathbf{A}\mathbf{x} - \mathbf{b}).$$

Note **x** is a vector and x_i is an element of **x**, which is a scalar. Note $\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top (\mathbf{A}\mathbf{x} - \mathbf{b})$ is also scalar. This can be seen as follows : • \mathbf{A}_i is the *i*th column of **A**, which is a vector

- $\bullet \ Ax-b \ \text{is a vector} \\$
- $\mathbf{A}_i^{\top}(\mathbf{A}\mathbf{x} \mathbf{b})$ is the dot product between vectors, so the result is a scalar

Component-wise expression of gradient

Now we only care about x_i , we can express $\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$ as a function of x_i :

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top (\mathbf{A}_i \mathbf{x} - \mathbf{b}) = \mathbf{A}_i^\top (\mathbf{A}_i x_i \oplus \mathbf{A}_{\neq i} \mathbf{x}_{\neq i}) - \mathbf{b}),$$

where $\mathbf{A}_{\neq i}$ is matrix \mathbf{A} without the i^{th} column. The notation $\mathbf{A}x_i \oplus \mathbf{A}_{\neq i}\mathbf{x}_{\neq i}$ denotes the block splitting of vector using block matrix \mathbf{U}_i that are $n \times n_i$ matrices that all the elements are zero, except the diagonal elements are 1 and

$$\mathbf{I}_n = \big[\mathbf{U}_1 \,|\, \mathbf{U}_2 \,|\, \dots \,|\, \mathbf{U}_s \,\big].$$

Any way since the partial gradient is a scalar so we have

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top \mathbf{A}_i x_i + \underbrace{\mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^\top \mathbf{b}}_{\text{constants for } x_i}.$$

Component Descent using exact minimization

We want to minimize $f = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$ component by component. We just see

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top \mathbf{A}_i x_i + \mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^\top \mathbf{b}.$$

Using 1st order optimality condition (Fermat's rule), we have

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = 0$$

We have

$$\mathbf{A}_i^{\top} \mathbf{A}_i x_i + \mathbf{A}_i^{\top} \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^{\top} \mathbf{b} = 0$$

Rearrange

$$x_i = \frac{-\mathbf{A}_i^{\top} \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} + \mathbf{A}_i^{\top} \mathbf{b}}{\mathbf{A}_i^{\top} \mathbf{A}_i}$$

Algorithm 1: CD with exact component minimization (CD-Ex)

Result: A solution \mathbf{x} that approximately solves $\min f(\mathbf{x})$

Initialization pick initial point $\mathbf{x}_0 \in \mathbb{R}^n$

while stopping condition is not met do

Pick *i* Perform exact update

$$x_i = \frac{-\mathbf{A}_i^{\top} \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} + \mathbf{A}_i^{\top} \mathbf{b}}{\mathbf{A}_i^{\top} \mathbf{A}_i}$$

end

Observation : repeated computations of $\mathbf{A}_i^{\top} \mathbf{A}_{\neq i}, \mathbf{A}_i^{\top} \mathbf{b}$ and $\mathbf{A}_i^{\top} \mathbf{A}_i$ inside the loop should be taken out !

(Improved) CD with exact component minimization

What we need to do : pre-compute $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}^{\top}\mathbf{b}$ outside the loop.

If we let $\mathbf{G} = \mathbf{A}^{\top} \mathbf{A}$, then $\mathbf{A}_i^{\top} \mathbf{A}_i = G_{ii}$, and $\mathbf{A}_i^{\top} \mathbf{A}_{\neq i}$ is the i^{th} row of \mathbf{G} without the i^{th} element, denote as $\mathbf{g}_{i,\neq i}$.

If we let
$$\mathbf{p} = \mathbf{A}^{\top} \mathbf{b}$$
, then $p_i = \mathbf{A}_i^{\top} \mathbf{b}$.

We have

Algorithm 2: (Improved) CD with exact component minimization (CD-Ex)

Result: A solution \mathbf{x} that approximately solves $\min f(\mathbf{x})$

```
Initialization pick initial point \mathbf{x}_0 \in \mathbb{R}^n
Set \mathbf{G} = \mathbf{A}^\top \mathbf{A} and \mathbf{p} = \mathbf{A}^\top \mathbf{b}
while stopping condition is not met do
Pick i
Perform exact update
\mathbf{p} = -\mathbf{g}_{i,\neq i}^\top \mathbf{x}_{\neq i}
```

$$x_i = \frac{-\mathbf{g}_{i,\neq i} \mathbf{x}_{\neq i} + p_i}{G_{ii}}$$

end

CD using gradient update

The update sub problem can also be solved approximately.

Says we use gradient descent with step size t_i , the update

$$x_i = x_i - t_i \nabla_i f(x_i; \mathbf{x}_{\neq i}) = x_i - t_i \mathbf{A}_i^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

Similar to (full) gradient descent, one possible step size t_i is the inverse of the Lipschitz constant.

The function $f = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$ is component-wise β_i -smooth : for all i = 1, 2, ..., n, there is a scalar $\beta_i > 0$ such that

$$\|\nabla_i f(a) - \nabla_i f(b)\|_2 \le \beta_i |a - b|,$$

for any $a, b \in \mathbb{R}$.

Such $\beta_i = ||\mathbf{A}_i||_2^2$, the L_2 norm of the i^{th} column of \mathbf{A} . (Proof in next page)

Component-wise Lipschitz constant of f is $\|\mathbf{A}_i\|_2^2$.

Aim : to show $\beta_i = \|\mathbf{A}_i\|_2^2$.

How : notice that

$$\nabla_i f(x_i; \mathbf{x}_{\neq i}) = \mathbf{A}_i^\top \mathbf{A}_i x_i + \underbrace{\mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^\top \mathbf{b}}_{\text{constants for } x_i}.$$

Therefore we have

$$\nabla_{i}f(a; \mathbf{x}_{\neq i}) - \nabla_{i}f(b; \mathbf{x}_{\neq i}) = \mathbf{A}_{i}^{\top}\mathbf{A}_{i}a - \mathbf{A}_{i}^{\top}\mathbf{A}b$$
$$= \mathbf{A}_{i}^{\top}\mathbf{A}_{i}(a - b)$$
$$|\nabla_{i}f(a; \mathbf{x}_{\neq i}) - \nabla_{i}f(b; \mathbf{x}_{\neq i})| = |\mathbf{A}_{i}^{\top}\mathbf{A}_{i}(a - b)|$$
$$\overset{\text{c.s.}}{\leq} |\mathbf{A}_{i}^{\top}\mathbf{A}_{i}||a - b|$$

Therefore the component-wise Lipschitz constant is $|\mathbf{A}_i^{\top}\mathbf{A}_i| = |\|\mathbf{A}_i\|_2^2|$. As L_2 norm is always non-negative so we can drop out the absolute sign and have $\beta_i = \|\mathbf{A}_i\|_2^2$. Component-wise gradient update

$$x_i = x_i - t_i \nabla_i f(x_i; \mathbf{x}_{\neq i}).$$

Put $t_i = \frac{1}{\|\mathbf{A}_i\|_2^2}$ and $\nabla_i f = \mathbf{A}_i^\top \mathbf{A}_i x_i + \mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^\top \mathbf{b}$ We then have

$$\begin{aligned} x_i &= x_i - \frac{\mathbf{A}_i^\top \mathbf{A}_i x_i + \mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} - \mathbf{A}_i^\top \mathbf{b}}{\|\mathbf{A}_i\|_2^2} \\ &= \frac{-\mathbf{A}_i^\top \mathbf{A}_{\neq i} \mathbf{x}_{\neq i} + \mathbf{A}_i^\top \mathbf{b}}{\|\mathbf{A}_i\|_2^2}, \end{aligned}$$

which has the same form as the exact minimization !

One way to select the index i is to select it by random.

Algorithm 3: Randomized Block Coordinate Gradient Descent (RBCGD) **Result:** A solution \mathbf{x} that approximately solves $\min f(\mathbf{x})$ **Initialization** pick initial point $\mathbf{x}_0 \in \mathbb{R}^n$ $\mathbf{G} = \mathbf{A}^{\top} \mathbf{A}, \ \mathbf{p} = \mathbf{A}^{\top} \mathbf{b}$ while stopping condition is not met do Random indexing : pick *i* as $\mathbb{P}(i = j) = \frac{1}{n}$ Gradient update : update selected coordinate x_k as $x_i = \frac{-\mathbf{g}_{i,\neq i}^\top \mathbf{x}_{\neq i} + p_i}{C}$ end

Convergence rate of this algorithm is, on average, $\mathcal{O}(\frac{1}{k})$. (For proof, see p 8-14 here)

Convergence rate of cyclic indexing is "similar" but much harder to obtain.

An example in \mathbb{R}^2

13 / 15

CD vs GD

Same setting, 3 iterations.

Notations : Gradient Descent, CD (every n iterations), CD (all iterations)

For this specific example, CD wins.

14 / 15

Problem (\mathcal{P}): given full rank $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{n}$, solve $\mathbf{x} := \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q}\mathbf{x} - \mathbf{p}^{\top} \mathbf{x} + c.$

The component-wise Lipschitz constant of f is L_2 -norm squared of columns of A.

CD algorithm (with exact component minimization or component-wise gradient descent)

$$x_i = rac{-\mathbf{g}_{i, \neq i}^\top \mathbf{x}_{\neq i} + p_i}{G_{ii}}, ext{ where } \mathbf{G} = \mathbf{A}^\top \mathbf{A}, \mathbf{p} = \mathbf{A}^\top \mathbf{b}.$$

CD vs GD

End of document