Solution to CO327 (2022Spring) Assignment 3 Lecturer: Andersen Ang June 8, 2022

1 Simple problems (9 points)

Find the optimal \mathbf{x} . If the problem has no solution, explain why.

max	$7x_1 + 5x_2$	\min_{x_1,x_2,x_3}	$-5x_1 - 4x_2 - 6x_3$	\max_{x_1,x_2}	$150x_1 + 175x_2$
(1) $\overline{x_1, x_2}$	$\begin{array}{l} 2x_1 + x_2 \leq 100\\ 4x_1 + 3x_2 \leq 240 \end{array} $	s.t.	$\begin{array}{l} x_1 - x_2 + x_3 \le 20 \\ -3x_1 - 2x_2 - 4x_3 \ge -42 \end{array} (3)$	s.t.	$7x_1 + 11x_2 \le 77 \\ 10x_1 + 8x_2 \le 80 \\ 1 \le 9$
	$x_1 \ge 0, x_2 \ge 0$		$ \begin{array}{l} 3x_1 + 2x_2 \le 30 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{array} $		$1 \le x_1 \le 9$ $3 \le x_2 \le 6$

Sol

1. $\mathbf{x}^* = [30, 40]^\top$.

2. $\mathbf{x}^* = [0, 15, 3]^\top$.

3.
$$\mathbf{x}^* = [4.8889, 3.8889]^{\top}$$

Marking:

- Correct solution: 3 points and no need to check the code (suppose it is correct).
- Incorrect solution
 - -2 points if the code has minor error.
 - -1 point if the code has major error.
 - 0 point if the code is all wrong.

2 LP relaxation of IP (10 points)

- 1. Draw the feasible region of the following constraints: $x_1 + x_2 \le 6$, $5x_1 + 9x_2 \le 45$, $x_1 \ge 0$, $x_2 \ge 0$.
- 2. Find $\mathbf{x}_{LP} = [x_1, x_2]^{\top}$ that maximizes $5x_1 + 8x_2$ subject to $x_1 + x_2 \leq 6$, $5x_1 + 9x_2 \leq 45$, $x_1 \geq 0$, $x_2 \geq 0$. If the problem has no solution, explain why.
- 3. Find $\mathbf{x}_{IP} = [x_1, x_2]^{\top}$ that maximizes $5x_1 + 8x_2$ subject to $x_1 + x_2 \leq 6, 5x_1 + 9x_2 \leq 45, x_1 \geq 0, x_2 \geq 0$ and x_1, x_2 are integers. If the problem has no solution, explain why.
- 4. (On LP relaxation) Round the solution \mathbf{x} for the LP problem to:

- The closest integer \mathbf{x}_{LP}^{Round}
- The closest integer that is feasible for the constraint $\mathbf{x}_{LP}^{Round, feasible}$

Let $f(\mathbf{x})$ be the objective function values at \mathbf{x} . Compare the following values: $f(\mathbf{x}_{LP})$, $f(\mathbf{x}_{IP})$, $f(\mathbf{x}_{LP})$, $f(\mathbf{$

- 2. $\mathbf{x}_{LP}^* = [2.25, 3.75] (1 \text{ pt})$, optimal val = -41.25 for the matlab min problem, and = +41.25 for the original problem (1 pt) (note that MATLAB uses min but the problem uses max, so there is a sign difference)
- 3. $\mathbf{x}_{IP}^* = [0, 5] (1 \text{ pt})$, optimal val = -40 (matlab min problem), and = +40 for the original problem (1 pt)
- 4. Rounded $\mathbf{x}_{LP}^* = [2, 4]$ (1 pt), objective value = +42, but such point is infeasible. Such objective value 42 is higher than 40 for the IP because the point is infeasible (i.e., a constraint is relaxed). (1 pt)

Rounded feasible $\mathbf{x}_{LP}^* = [2,3]$ or [3,3] (1 pt), objective value = +34 (or +39), but such feasible point is far from the optimal solution [0,5]. (1 pt)

LP relaxation does not work here as rounding will round \mathbf{x}_{LP} far away from \mathbf{x}_{IP} . (1 pt)

(* give points as long as the arguments make sense)

3 BIP (6 points)

- 1. Find $\mathbf{x} = [x_1, x_2, x_3, x_4]^{\top}$ that maximizes $8x_1 + 11x_2 6x_3 + 4x_4$ subject to $5x_1 + 7x_2 4x_3 + 3x_4 \le 14$ and all $x_i \in \{0, 1\}$. If the problem has no solution, explain why.
- 2. Convert the previous problem into a Knapsack problem and solve the new BIP. Does the new problem share the same solution to the previous one? If no, explain why.

Sol

1. Reformulate the problem to

min $-[8, 11, -6, 4]\mathbf{x}$ s.t. $[5, 7, -4, 3]\mathbf{x} \le 14, x \in \{0, 1\}$

MATLAB code intlinprog(c, [1:4], A, b, [], [], zeros(4,1), ones(4,1)) gives $\mathbf{x}^* = [1, 1, 0, 0]^{\top}$ (2 pts), optimal cost = -19 for the MATLAB min problem and = +19 for the original problem (2 pts).

- 2. Knapsack problem : maximize $8x_1 + 11x_2 + 6y_3 + 4x_4$ -6 subject to $5x_1 + 7x_2 + 4y_3 + 3x_4 \le 18$, all $x, y \in \{0, 1\}$
 - Not the same sol, because they give different solution \mathbf{x} (or similar explanation) only get 1pt
 - Same sol get all 2 pts.

(If the student does not show the derivation (see below), -1 point) (If the student shows the derivation but wrong, -1 point)

Detail explanation why same solution Students may think that the problems give different **x** so they have different solution, this is true. However, both problem share the same optimal value. For $\mathbf{x} = [1, 1, 1, 0]$ in part 2 it gives 8(1) + 11(1) + 6(1) + 4(0) - 6 = 19. The trap here is the constant term -6.

END.
The derivation for part 2
original problem min
$$-\begin{bmatrix} 3\\-4\end{bmatrix}^T \times s.t. \begin{bmatrix} 5\\-4\end{bmatrix}^T \times s.t. \begin{bmatrix} 5\\-4\end{bmatrix}^T \times s.t. X_1 \in S_{0,1}$$

max $\begin{bmatrix} 4\\-4\end{bmatrix}^T \times s.t. \begin{bmatrix} 5\\-4\end{bmatrix}^T \times s.t. \begin{bmatrix} 5\\-4\end{bmatrix}^T \times s.t. X_1 \in S_{0,1}$
The Knapsack we wort all \times has positive coefficient in the CX
So $-b_{X_3} \implies -b(1-y_2)$, i.e. Thirdne $X_3 = 1-y_3$
Now we have
 $x_{1,y} = \begin{bmatrix} 8\\+4\\+4\end{bmatrix}^T \begin{bmatrix} X_1\\+4\\-4\end{bmatrix}^T \begin{bmatrix} X_1\\+4\end{bmatrix}^T \begin{bmatrix} X_1\\+4\end{bmatrix}^$