
Accelerated gradient descent for large-scale optimization

On Gradient descent solving quadratic problems

Andersen Ang
ECS, Uni. Southampton, UK
andersen.ang@soton.ac.uk

Homepage angms.science

Version: March 13, 2025

First draft: November 12, 2018
Guest lecture of MARO 201 -
Advanced Optimization
Faculte Polytechnique de Mons
Unversite de Mons

Content

Introduction & preliminaries
Gradient Descent as an iterative algorithm
Gradient Descent is slow when level set is elliptic
Accelerated gradient method
Nonnegative least squaress
Adaptive restarts
Convergence rate of Gradient Descent on (P)
Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality
Convergence rate of accelerated gradient method on (P)
Convergence of accelerated gradient method explained using ODE

andersen.ang@soton.ac.uk

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

2 / 92

Introduction
▶ Theme: solve

(P): given A ∈ Rm×n, b ∈ Rm, find x ∈ Rn by solving

argmin
x

f(x) :=
1

2
∥Ax− b∥22.

▶ 1st-order optimality condition ∇f(x) = 0 gives

A⊤Ax−A⊤b = A⊤(Ax− b) = Ax− b = 0 ∈ Rm.

we denote ∇f(x) the gradient vector of f in the standard basis in Rn with respect to the variable x
at the point x

▶ Solving (P) is the same as solving linear inverse problem: given
A ∈ Rm×n

b ∈ Rm , solve Ax = b.

▶ Linear algebra solution: x = A−1b if A−1 exists.

3 / 92

This lecture: constrained convex quadratic problem

(P): given A ∈ Rm×n, b ∈ Rm, find x ∈ C ⊂ Rn by solving

argmin
x

f(x) :=
1

2
∥Ax− b∥22.

▶ We focus on the following simple convex set C
▶ C = Rn (no constraint), (P) = least squares (LS).
▶ C = Rn

+ (nonnegative constraint), (P) = Nonnegative LS (NNLS).

▶ Some other C (not the focus) :
▶ C =

{
x ∈ Rn

∣∣ ∥x∥2 ≤ ϵ
}
(l2-norm constraint).

▶ C =
{
x ∈ Rn

∣∣ ∥x∥1 ≤ ϵ
}
(l1-norm constraint).

▶ C =
{
x ∈ Rn

∣∣ ∥x∥0 ≤ ϵ
}
(l0-norm constraint).

▶ C =
{
x ∈ Rn

∣∣ ∥x∥TV ≤ ϵ
}
(Total variation constraint).

▶ C =
{
x ∈ Rn

∣∣ Cx ≤ d
}
(polytope constraint).

4 / 92

Why study (P)

(P): given A ∈ Rm×n, b ∈ Rm, find x ∈ C ⊂ Rn by solving

argmin
x

f(x) :=
1

2
∥Ax− b∥22.

1. (P) is easy to understand.
We will look at gradient descent, and the accelerated variants through the lens of (P).

2. (P) is applicable to wide range of situations.
We see (P) when we take 2nd-order Taylor’s approximation of a model.

3. (P) is easy to generalize/modify.

5 / 92

Facts: basic properties of quadratic problem (P)
▶ (P) is a convex problem: local minima → global minima

▶ C is a convex set [assumption]
▶ cost function f is convex

▶ f(x) =
1

2
x⊤Qx− p⊤x+ c, where Q = A⊤A, p = A⊤b, c = 1

2∥b∥
2
2.

▶ (P) has a unique global minimum x∗

▶ if A full rank [assumption] =⇒ Q is positive definite ⇐⇒ λmin(Q) > 0.

▶ Gradient ∇f(x) = Qx− p = A⊤Ax−A⊤b

▶ f is L-smooth with L = ∥Q∥2 =
√
λmax(Q⊤Q) = λmax(Q) = σmax(A).

▶ A function g(x) is L-smooth if the gradient ∇g is L-Lipschitz : ∥∇g(a)−∇g(b)∥ ≤ L∥a− b∥ ∀a, b ∈ domg

▶ ∥Q∥2 =
√

λmax
(
(A⊤A)2

)
=

√
λ2
max

(
A⊤A

)
= λmax

(
A⊤A

)
= σmax(A)

∥∇f(x)−∇f(y)∥2 = ∥(Qx− p)− (Qy − p)∥2
= ∥Q(x− y)∥2
oni
≤ ∥Q∥2∥x− y∥2.

oni: operator norm inequality ∥Ax∥ ≤ ∥A∥∥x∥.
6 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

7 / 92

Iterative algorithm to solve (P)

▶ Iterative solver: produce a sequence {xk}k∈N = {x1,x2, . . . } such that

f(xk+1) ≤ f(xk) for all k. (Descent condition)

▶ How: starting with an initial guess x0, perform the iteration/update

xk+1︸ ︷︷ ︸
new variable

= xk︸︷︷︸
current variable

+ t︸︷︷︸
stepsize

· ∆︸︷︷︸
direction

.

until a stopping condition is met.

▶ Two remarks

1. ∆ is called “direction” but it can have magnitude larger than 1.
The true “stepsize” is t∥∆∥, the true ”direction” is ∆∥∆∥−1.

2. We focus on algo., but choosing x0 also affect the performance of algo. → a topic on its own.

8 / 92

Stopping condition (not the focus here)

Type order Stop if

Variable change − dist(xk,xk−1) ≤ ϵ

Functional value 0th f(xk) ≤ ϵ

Successive functional value 0.5th
∣∣f(xk)− f(xk−1)

∣∣ ≤ ϵ

Gradient value 1st ∥∇f(xk)∥2 ≤ ϵ

Hessian value 2nd λmin

(
∇2f(xk)

)
≥ ϵ > 0

Which one to use and what are their pros & cons will take another hour to explain.

I call successive functional value as “0.5th” order because
∣∣f(xk)− f(xk−1)

∣∣ resembles ∥∇f∥: by
the fact that f is convex and L-smooth, we have that for xk+1 = xk − tk∇f(xk), its holds

f(xk+1) ≥ f(xk) + ⟨∇f(xk), tk∇f(xk)⟩+
L

2
∥tk∇f(xk)∥22

Hence ∣∣f(xk+1)− f(xk)
∣∣ ≥

(
tk +

L

2
t2k

)
∥∇f(xk)∥22

9 / 92

Gradient descent (GD)
▶ GD uses ∆ = −∇f(x) so we have xk+1 = xk − t∇f(xk).

▶ Choices of stepsize t
1. Optimal stepsize / exact line search: tExact = argmin

t≥0
f(x+ t∆).

Practically the best but can be expensive to compute.

2. Line search stepsize: backtracking / sufficient descent / Armijo Rule / Wolfe condition.
Practically okay and commonly used.

3. Constant stepsize: t is fix.
Practically not the best, but theoretically easier to analyze.

4. * Constant stepsize using Lipschitz constant: tL =
1

L(f)
.

A common choice of stepsize for theorist.

5. Diminishing stepsize: tk+1 = tk · θ, θ < 1, or tk =
1

k
.

Good for stochastic gradient.

Our focus: 1 and 4.
10 / 92

GD with optimal stepsize on (P) : argmin
x

f(x) =
1

2
x⊤Qx− p⊤x

tExact = argmin
t≥0

f
(
x− t∇f(x)

)
=

∇f(x)⊤∇f(x)
∇f(x)⊤Q∇f(x)

=
∥∇f(x)∥22
∥∇f(x)∥2Q

.

Derivation: reading exercise

f(x) = 1
2x

⊤Qx− p⊤x. To get tExact = argmin
t≥0

g(t) = f(x− t∇f(x)), set ∂g(t)
∂x

= 0.

g(t) =
1

2

(
x− t∇f(x)

)⊤
Q
(
x− t∇f(x)

)
− p⊤(

x− t∇f(x)
)
, ignore terms without t:

g(t) = 1
2

(
− x⊤Qt∇f(x)− t∇f(x)⊤Qx+ t2∇f(x)⊤Q∇f(x)

)
+ tp⊤∇f(x)

= −x⊤Qt∇f(x) + 1

2
t2∇f(x)⊤Q∇f(x) + tp⊤∇f(x)

∂g(t)

∂t
= −x⊤Q∇f(x) + t∇f(x)⊤Q∇f(x) + p⊤∇f(x)

= −(Qx− p)⊤∇f(x) + t∇f(x)⊤Q∇f(x)
= −∇f(x)⊤∇f(x) + t∇f(x)⊤Q∇f(x).

Finally,
∂g(t)

∂x
= 0 =⇒ ∇f(x)⊤∇f(x) = t∇f(x)⊤Q∇f(x).

11 / 92

GD algo. with tExact on (P) : argmin
x

f(x) =
1

2
x⊤Qx− p⊤x, Q = A⊤A, p = A⊤b

GD update:xk+1 = xk − tExact∇f(xk)

= xk − ∥∇f(xk)∥22
∥∇f(xk)∥2Q

∇f(xk)

= xk − ∥Qxk − p∥22
∥Qxk − p∥2Q

(
Qxk − p

)
Algorithm 1: GD (with tExact) for (P)

Result: A sol. x that approximately solves (P)
1 Initialization Set x0 ∈ Rn, p = A⊤b, Q = A⊤A
2 while stopping condition is not met do
3 g = Qx− p

4 x = x− ∥g∥22
∥g∥2Q

g

5 end

12 / 92

An example in R2 : xTrue = [0 0]⊤, b = A−1xTrue,x0 = [5 4]⊤, 30 iterations, four A[
1 0
0 1

] [
1 0

−0.3 1

] [
1 0

−0.6 1

] [
1 0
−1 1

]

13 / 92

Observations

▶ If the level set of f(x) is circular, GD goes to x∗ very fast. (In fact, in 1 step)

▶ When the level set of f(x) is elliptic, GD zigzags (and slow).

Questions

▶ Why zigzags? Where does this zigzag come from?

▶ How to deal with it: how to improve GD?

14 / 92

Remarks on GD with tExact

▶ GD update with tExact:

x = x− ∥∇f(x)∥22
∥∇f(x)∥2Q

∇f(x) = x− (Qx− p)⊤(Qx− p)

(Qx− p)⊤Q(Qx− p)
(Qx− p).

▶ The step size is not constant, it depends on x
→ hard to analyze.

▶ The step size contains many vector/matrix-vector/matrix products
→ not suitable on problem with big m,n.

▶ We now consider GD with fixed step size tL.

15 / 92

GD alg. with fixed tL =
1

L
on (P) : argmin

x
f(x) = 1

2x
⊤Qx− p⊤x, Q = A⊤A, p = A⊤b

GD update: x+ = x− 1

∥Q∥2
∇f(x) = x− 1

∥Q∥2
(
Qx− p

)
= · · ·

we can further simplify this expression, come back to this later.

Algorithm 2: GD for (P)

Result: A solution x that approximately solves (P)
1 Initialization Set x0 ∈ Rn, p = A⊤b, Q = A⊤A
2 Pre-compute L = ∥Q∥2
3 while stopping condition is not met do

4 x = x− 1

L

(
Qx− p

)
.

5 end

16 / 92

Same example in R2, but with stepsize tL
Using tL has slower convergence, but more applicable to big problem.

Test your understanding: why here tL is fixed but the distances between consecutive points are
changing? (Answer in p.8) 17 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

18 / 92

GD is “stupid” Figure: the first iteration of GD for the elliptic case.

Question: Why GD moves along the red line, not the blue line?
19 / 92

Deeper understanding of GD: Why GD moves along the red line not the blue line?
▶ Two more questions:

▶ Where does the expression x = x− t∇f(x) “come from”?
▶ What does the expression x = x− t∇f(x) “actually do”?

▶ Answers :

▶ It comes from a local quadratic model (denote as F) of f .
▶ It minimizes that local quadratic model F .

▶ GD is stupid because GD is “local”

▶ GD uses local info. (which is F) to makes local decision – so it follows the red path.
▶ Blue path is a global decision that needs global info.
▶ Being a local decision maker, there is no guarantee the decision made by GD will be as good as the global

optimal one.
▶ GD is a greedy algorithm.

Question: then why GD made such a good move here?
Answer: it just happens when f is “nice”, the local decision made by GD is coincidentally as
good as the global one.

20 / 92

The local model F that GD minimizes

▶ GD step takes local info xk to minimize a local model F of f

xk+1 = xk − t∇f(xk) = argmin
x

F (x;xk).

▶ Such local model F :
▶ Takes xk as parameter

▶ Is a 2nd-order function of x

▶ Expression of F (x;xk) = f(xk) + (x− xk)
⊤∇f(xk) +

1

2tk
∥x− xk∥22.

How come:
∂F

∂x
= 0 yields xk − t∇f(xk).

▶ Equivalent expression of F

F (x;xk) =
1

2tk

∥∥∥∥x−
(
xk − tk∇f(xk)

)∥∥∥∥2

2

.

▶ Note that F isspherical.
21 / 92

GD makes progress based on the local spherical model
For tExact:

For tL : a fixed factor
1

L
is used.

22 / 92

GD zigzaging theorem

Question: why GD zigzags with tExact?
Answer: in fact this always occurs.

Theorem (reading exercise) Consecutive gradient directions
with tExact are orthogonal to each other: ∇f(xk+1) ⊥ ∇f(xk).

Proof: ∇f(xk+1) ⊥ ∇f(xk) means ⟨∇f(xk+1),∇f(xk)⟩ = 0.

To show this, recall tExact minimizes g(t) = f(xk − t∇f(xk)).

Consider
∂g

∂t
= 0, we have

∂g

∂t

chain rule
=

〈
−∇f(xk),∇f

(
xk − tk∇f(xk)

)〉
= −

〈
∇f(xk),∇f

(
xk+1

)〉
= 0.

23 / 92

The problem of gradient descent

When f is not nice: tExact tL

To improve GD:
1. On dynamic step size tExact: reduce the zigzag.
2. On fixed step size tL: “move more” when appropriate.

24 / 92

Summary so far

(P) : given A ∈ Rm×n, b ∈ Rm, find x ∈ Rn by solving

x := argmin
x

f(x) =
1

2
∥Ax− b∥22 =

1

2
x⊤Qx− p⊤x,

where Q = A⊤A, p = A⊤b, L = ∥Q∥2.

Gradient Descent algorithm x = x− t∇f(x)

▶ tExact =
∥∇f(x)∥22
∥∇f(x)∥2Q

or tL =
1

L
.

▶ GD is a local decision maker.

▶ GD = minimizing a local quadratic model F of f at point xk.

▶ When level sets of f is elliptic:
▶ GD zigzags with tExact.
▶ GD is slow with tL.

25 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

26 / 92

Acceleration by extrapolation

▶ We will look at two extrapolation schemes:
▶ Polyak’s Heavy Ball Method (HBM)
▶ Nesterov’s acceleration

▶ Idea: add “momentum” to the current iterate.

▶ Momentum = the “previous history”.

HBM xupdated + previous momentum

= xk+1 + βk(xk − xk−1), βk ≥ 0

= xk+1 − βktk−1∇f(xk−1)

Push xupdated along −∇f(xk−1) for ∗ amount
∗ = βktk−1∥∇f(xk−1)∥.

▶ Other momentum (not the focus)
▶ Adam (a variable metric gradient method)
▶ Donald G. Anderson acceleration

Nesterov (2018, 2025)

27 / 92

Three update schemes

▶ Normal gradient
xk − tk∇f(xk)

Move the point xk in the direction −∇f(xk) for tk∥∇f(x)∥ amount.

▶ Polyak’s Heavy Ball Method

xk − tk∇f(xk) + βk(xk − xk−1)

Perform a GD, move the updated-x in the direction of the previous step for βk∥xk −xk−1∥ amount.

▶ Nesterov’s acceleration

xk − tk∇f(xk + βk(xk − xk−1)) + βk(xk − xk−1)

Move the not-yet-updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount,
perform a GD on the shifted-x, then move the updated-x in the direction of the previous step for
βk∥xk − xk−1∥ amount.

28 / 92

Algorithm 3: HBM for (P), with step size tExact

Result: A solution x that approximately solves (P)
1 Initialization Set x0 ∈ Rn, p = A⊤b, Q = A⊤A, β ≥ 0
2 while stopping condition is not met do
3 g = Qx− p

4 x = x− ∥g∥22
∥g∥2Q

g + β(x− x−)

5 end

Algorithm 4: HBM for (P), with step size tL

Result: A solution x that approximately solves (P)
1 Initialization Set x0 ∈ Rn, p = A⊤b, Q = A⊤A, β ≥ 0
2 while stopping condition is not met do
3 g = Qx− p

4 x = x− 1

∥Q∥2
g + β(x− x−)

5 end

▶ Fixed β is used here.
▶ When β = 0, HBM reduces to GD

29 / 92

HBM with tExact Same example set up, 4 iterations.

Red: normal gradient. Blue: HBM with different fixed β.

Observation: for nice f (with spherical level sets), GD is already good enough and HBM adds a
little effect. However, for bad f (with elliptic level sets), HBM is better in some cases.

30 / 92

HBM with tL Same example set up, 4 iterations.

Red: normal gradient. Blue: HBM with different fixed β.

Observation: same. If nice f (spherical lv. sets), GD is already good enough. If bad f (with elliptic
lv. sets), HBM is better in some cases.

31 / 92

If f is nice, GD doesn’t need acceleration.
If f is nice, GD doesn’t need acceleration.
If f is nice, GD doesn’t need acceleration.

This is so important so I repeated 3 times.

The message: do not use acceleration blindly, for some problems GD
don’t need acceleration. Using acceleration blindly doesn’t make you
look cool. Knowing when to use it makes you look cool.

32 / 92

Effect of different β on HBM (on elliptic f)
In HBM, we need to guess a good β. A bad β gives bad effect.

GD xk − tk∇f(xk) HBM xk − tk∇f(xk) + β(xk − xk−1)

33 / 92

Effect of different β on HBM, more iterations
Question: the smaller β, the better HBM?
Answer: No.

Is there a way to find best β? What about dynamic β? 34 / 92

Nesterov’s acceleration

GD xk+1 = xk − tk∇f(xk)
HBM xk+1 = xk − tk∇f(xk) + βk(xk − xk−1)

Nesterov xk+1 = xk − tk∇f(xk + βk(xk − xk−1)) + βk(xk − xk−1)
Nesterov-2 yk+1 = xk − tk∇f(xk)

xk+1 = yk+1 + βk(yk+1 − yk)

▶ We saw HBM with fixed β.

▶ Nesterov gave the update scheme with close-form formula for βk (in 1983)

α1 ∈ [0, 1], αk+1 =

√
α4
k + 4α2

k − α2
k

2
, βk =

αk(1− αk)

α2
k + αk+1

.

Note: βk is not fix, it is a function of α1. We need to guess α1.

▶ How to get Nesterov-2 from Nesterov : set x−1 = x0, y−1 = y0

35 / 92

Algorithm 5: Nesterov’s accelerated gradient for (P)

Result: A solution x that approximately solves (P)
1 Initialization Set x0 ∈ Rn, p = A⊤b, Q = A⊤A, α1 ∈ (0 1)
2 while stopping condition is not met do
3 Compute ∇f(xk) and step size t

4 Compute αk+1 =

√
α4
k + 4α2

k − α2
k

2
, βk =

αk(1− αk)

α2
k + αk+1

5 yk+1 = xk − tk∇f(xk)
6 xk+1 = yk+1 + βk(yk+1 − yk)

7 end

36 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

37 / 92

Constrained problem and projected gradient descent

(P) : given A ∈ Rm×n, b ∈ Rm, find x∈ C ⊂ Rn by solving

x := argmin
x∈C

f(x) =
1

2
∥Ax− b∥22.

The basic GD becomes Projected GD.

Algorithm 6: PGD for (P), with step size t

Result: A solution x∈ C that approximately solves (P)
1 Initialization Set x0 ∈ C
2 while stopping condition is not met do
3 Compute ∇f(x) and step size tk
4 Compute gradient update y = x− tk∇f(x)
5 Compute projection x = PC(y)

6 end

Gradient and projection in 1 line: x = PC

(
x− tk∇f(x)

)
.

Note: now the distance traveled between consecutive points is not t∥∇f(x)∥ but ∥x− PC(x− tk∇f(x))∥.

38 / 92

Nonnegative least squares

(P) : given A ∈ Rm×n, b ∈ Rm, find x∈ Rn
+ by solving x := argmin

x∈Rn
+

f(x) =
1

2
∥Ax− b∥22.

Algorithm 7: PGD for (P), with step size t

Result: A solution x ∈ Rn
+ that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+

2 while stopping condition is not met do
3 Compute ∇f(x) and step size tk
4 Compute projected gradient update x = [x− tk∇f(x)]+ = max(x, 0).

5 end

Algorithm 8: Nesterov’s accelerated projected gradient for (P)

Result: A solution x ∈ Rn
+ that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+, p = A⊤b, Q = A⊤A, α1 ∈ (0 1)

2 while stopping condition is not met do
3 Compute ∇f(xk) and step size t

4 Compute αk+1 =

√
α4
k + 4α2

k − α2
k

2
, βk =

αk(1− αk)

α2
k + αk+1

5 yk+1 = [xk − tk∇f(xk)]+
6 xk+1 = yk+1 + βk(yk+1 − yk)

7 end 39 / 92

PGD vs Accelerated PG on NNLS

Figure: m = n = 50, A ∈ Rm×n, x∗ = 0, x0 ∈ Rn, α1 = 0.9

▶ APGD is much faster.
▶ PGD is monotonic, APGD is not.
▶ Choice of step size makes small difference.
▶ Important: APGD and PGD have a very different convergence rate

▶ the y-axis is in log-scale.
▶ the curve of PGD and that of APGD have different slopes.

40 / 92

Other βk schemes
▶ Nesterov’s parameters looks so complicated

αk+1 =

√
α4
k + 4α2

k − α2
k

2
, βk =

αk(1− αk)

α2
k + αk+1

▶ Another Nesterov’s parameters

α2
k+1 = (1− αk+1)α

2
k + κ−1αk+1, βk =

αk(1− αk)

α2
k + αk+1

▶ Yet another Nesterov’s parameters

αk+1 =
1 +

√
1 + 4α2

k

2
, βk =

1− αk

αk+1
.

▶ Paul Tseng parameter
βk =

k − 1

k + 2
, or

1

k + 2
,

▶ Using conditional number

βk = β =
1−

√
κ′

1 +
√
κ′
, κ′ =

1

κ
, κ =

σmax(Q)

σmin(Q)
=
λmax(Q)

λmin(Q)

41 / 92

Different β on NNLS

m = n = 100, A ∈ Rm×n, x∗ = 0, x0 ∈ Rn, α1 = 0.9
42 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

43 / 92

Nesterov’s ripple

m = n = 10, A ∈ Rm×n, x∗ = 0, x0 ∈ Rn, α1 = 0.9

▶ Function values of GD always go down.
▶ Function values of APGD sometimes go up.
▶ APGD exhibits some periodic behavior.

44 / 92

Acceleration with restarts
▶ When you run GD xk+1 = xk − t∇f(xk), you always get f(xk+1) ≤ f(xk).

Why :
▶ GD is the global minimizer of a local approximator F of f at xk.

More technical, see theorem 2 in https://angms.science/doc/CVX/CVX_GD_Convergence.pdf

▶ GD is a local decision maker, a greedy algorithm.

▶ We “twist” the Accelerated GD algorithm:

Go back to normal GD when function value ↑

45 / 92

https://angms.science/doc/CVX/CVX_GD_Convergence.pdf

Acceleration with restarts

But go back to GD = go back to a slow algorithm!
→ Re-run acceleration right after back to GD.

46 / 92

Effect of restarts on APGD

47 / 92

Algorithm 9: APGD (using Nesterov’s parameter) for (P), no restart
Result: A solution x that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+, p = A⊤b, Q = A⊤A, α1 ∈ (0 1)

2 while stopping condition is not met do
3 Compute ∇f(xk), step size tk

4 Compute αk+1 =

√
α4

k + 4α2
k − α2

k

2
, βk =

αk(1 − αk)

α2
k + αk+1

5 yk+1 = [xk − tk∇f(xk)]+
6 xk+1 = yk+1 + βk(yk+1 − yk)

7 end

Algorithm 10: APGD (using Nesterov’s parameter) for (P) with restart
Result: A solution x that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+, p = A⊤b, Q = A⊤A, α1 ∈ (0 1)

2 while stopping condition is not met do
3 Compute ∇f(xk), step size tk

4 Compute αk+1 =

√
α4

k + 4α2
k − α2

k

2
, βk =

αk(1 − αk)

α2
k + αk+1

5 yk+1 = [xk − tk∇f(xk)]+
6 xk+1 = yk+1 + βk(yk+1 − yk)
7 If error increase do
8 xk+1 = [xk − tk∇f(xk)]+ (go back to gradient descent)
9 yk+1 = xk+1, αk = α1 (reset all parameters)

10 end if
11 end

48 / 92

Algorithm 15: APGD (using Paul Tseng’s parameter) for (P) with restart
Result: A solution x that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+, p = A⊤b, Q = A⊤A, k̂ = 0

2 while stopping condition is not met do
3 Compute ∇f(xk), step size tk

4 Compute βk =
(k − k̂) − 1

(k − k̂) + 2
5 yk+1 = [xk − tk∇f(xk)]+
6 xk+1 = yk+1 + βk(yk+1 − yk)
7 If error increase do
8 xk+1 = [xk − tk∇f(xk)]+ (go back to gradient descent)

9 yk+1 = xk+1, k̂ = k̂ + k (reset all parameters)
10 end if
11 end

Algorithm 16: APGD (using Conditional number) for (P) with restart
Result: A solution x that approximately solves (P)

1 Initialization Set x0 ∈ Rn
+, p = A⊤b, Q = A⊤A, β =

1 −
√
κ′

1 +
√
κ′

2 while stopping condition is not met do
3 Compute ∇f(xk), step size tk
4 yk+1 = [xk − tk∇f(xk)]+
5 xk+1 = yk+1 + β(yk+1 − yk)
6 If error increase do
7 xk+1 = [xk − tk∇f(xk)]+ (go back to gradient descent)
8 yk+1 = xk+1 (reset all parameters)
9 end if

10 end
48 / 92

Comparing all schemes

49 / 92

Warning: restart is not “always good”

50 / 92

Summary so far
(P) : given A ∈ Rm×n, b ∈ Rm, find x ∈ C by solving

x := argmin
x∈C

f(x) =
1

2
∥Ax− b∥22 =

1

2
x⊤Qx− p⊤x,

Q = A⊤A, p = A⊤b, L = ∥Q∥2.

Algorithm: Gradient Descent x = x− t∇f(x)
▶ Minimizes a local model of f , slow if level sets of f is elliptic.

Acceleration : add momentum βk(xk − xk−1)

▶ HBM xk+1 = xk − t∇f(xk) + βk(xk − xk−1)

▶ Nesterov xk+1 = xk − t∇f(xk + βk(xk − xk−1)) + βk(xk − xk−1)

▶ Nesterov’s parameter αk+1 =

√
α4
k + 4α2

k − α2
k

2
, βk =

αk(1− αk)

α2
k + αk+1

▶ Other parameters β =
k − 1

k + 2
, β =

1−
√
κ′

1 +
√
κ′

▶ Adaptive restarts

51 / 92

Why the acceleration works?

Pourquoi l’acceleration fonctionne?

52 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

53 / 92

Convergence rate
Recall the observation : different slope =⇒ different convergence rate

We are going to study the convergence properties of GD.
▶ For simplicity, consider the model (P) with no constraint.
▶ The theory applies for general any smooth convex f .

54 / 92

Convergence condition of GD on (P)

(P) : given A ∈ Rm×n, b ∈ Rm, find x ∈ Rn by solving

x := argmin
x

f(x) =
1

2
∥Ax− b∥22 =

1

2
x⊤Qx− p⊤x,

where Q = A⊤A, p = A⊤b, assumes A is full rank.

Theorem:

If stepsize tk > 0 fulfills:

max
{
|1− tkλmax(Q)|, |1− tkλmin(Q)|

}
< 1 for all k ∈ N,

the sequence {xk}k∈N produced by GD iteration

xk+1 = xk − tk∇f(xk)

converges to the minimizer x∗ of (P).

Why: reading exercise in the next three pages.

55 / 92

Convergence condition of gradient descent ... 1/2

f(x) =
1

2
x⊤Qx− p⊤x, ∇f(x) = Qx− p and xk+1 = xk − tk∇f(xk)

= xk − tk(Qxk − p) = xk − tkQxk + tkp
= (In − tkQ)xk + tkp

Recall 1st-order optimality condition ∇f(x∗) = 0 so Qx∗ − p = 0.

xk+1 = (In − tkQ)xk + tkQx∗

xk+1 − x∗ = (In − tkQ)xk + tkQx∗ − x∗

= (In − tkQ)xk + (tkQ− In)x∗

= (In − tkQ)(xk − x∗)
∥xk+1 − x∗∥2 = ∥(In − tkQ)(xk − x∗)∥2

oni
≤ ∥In − tkQ∥2∥xk − x∗∥2. (oni : operator norm inequality)

Let µIn ⪯ λmin(Q)In ⪯ Q ⪯ λmax(Q)In ⪯ LIn, then

∥xk+1 − x∗∥2 ≤ max
{
|1− tkL|, |1− tkµ|

}
∥xk − x∗∥2

Derivation
µIn ⪯ Q ⪯ LIn

⇐⇒ −LIn ⪯ −Q ⪯ −µIn
⇐⇒ −tkLIn ⪯ −tkQ ⪯ −tkµIn
⇐⇒ In − tkLIn ⪯ In − tkQ ⪯ In − tkµIn
⇐⇒ (1− tkL)In ⪯ In − tkQ ⪯ (1− tkµ)In
⇐⇒ ∥(1− tkL)In∥2 ≤ ∥In − tkQ∥2 ≤ ∥(1− tkµ)In∥2
⇐⇒ |1− tkL| · ∥In∥2 ≤ ∥In − tkQ∥2 ≤ |1− tkµ| · ∥In∥2
⇐⇒ |1− tkL| ≤ ∥In − tkQ∥2 ≤ |1− tkµ|

So ∥In − tkQ∥2 ≤ max
{
|1− tkL|, |1− tkµ|

}
. 56 / 92

Convergence of gradient descent ... 2/2

∥xk+1 − x∗∥2 ≤ max
{
|1− tkL|, |1− tkµ|

}
∥xk − x∗∥2

≤ max
{
|1− tkL|, |1− tkµ|

}(
max

{
|1− tk−1L|, |1− tk−1µ|

}
∥xk−1 − x∗∥2

)
...

≤
(∏

k

max
{
|1− tkL|, |1− tkµ|

})
∥x0 − x∗∥2.

Hence GD converge for (P) if

max
{
|1− tkL|, |1− tkµ|

}
< 1 ∀k.

57 / 92

Convergence of GD on (P) with fix stepsize

∥xk+1 − x∗∥2 ≤
(∏

k

max
{
|1− tkL|, |1− tkµ|

})
∥x0 − x∗∥2

=
(
max

{
|1− tL|, |1− tµ|

})k
∥x0 − x∗∥2.

Case A ∥xk+1 − x∗∥2 ≤ |1− tL|k∥x0 − x∗∥2.
Case B ∥xk+1 − x∗∥2 ≤ |1− tµ|k∥x0 − x∗∥2.

No matter which case, we need | · | < 1.
Case A |1− tL| < 1 ⇐⇒ 1− tL < 1 or 1− tL > −1

⇐⇒ −tL < 0 or − tL > −2

⇐⇒ t > 0 or t <
2

L

⇐⇒ 0 < t <
2

L

Similarly we get 0 < t <
2

µ
for case B.

58 / 92

Convergence of GD on (P) for fix t

(P) : given full rank A ∈ Rm×n, b ∈ Rm, find x ∈ Rn by solving

x := argmin
x

f(x) =
1

2
∥Ax− b∥22 =

1

2
x⊤Qx− p⊤x,

where Q = A⊤A, p = A⊤b, L = ∥Q∥2.

We have ∥xk+1 − x∗∥2 ≤
(
max

{
|1− tL|, |1− tµ|

})k
∥x0 − x∗∥2.

Suppose case A occurs
∥xk+1 − x∗∥2 ≤ |1− tL|k∥x0 − x∗∥2.

We have

Theorem (Convergence of GD with fixed step size, case A)
For fixed step size

0 < t <
2

L
,

the sequence {xk}k∈N produced by GD converges to x∗ of (P).

59 / 92

Convergence of GD on (P) with t =
1

L

∥xk+1 − x∗∥2 ≤
(
max

{
|1− tL|, |1− tµ|

})k
∥x0 − x∗∥2.

If t =
1

L

∥xk+1 − x∗∥2 ≤
(
max

{∣∣∣∣1− L

L

∣∣∣∣ , ∣∣∣1− µ

L

∣∣∣})k

∥x0 − x∗∥2

=
(
1− 1

κ

)k
∥x0 − x∗∥2, where κ =

L

µ
> 1

▶ If κ = 1, 1− 1

κ
= 0, and GD converge in 1 step.

▶ If κ = 9999, 1− 1

κ
= 0.999..., and GD converge very slowly.

60 / 92

Convergence of GD on (P) with the “best” t

The “best” t =
2

L+ µ

∥xk+1 − x∗∥2 ≤
(
1− 2

κ+ 1

)k
∥x0 − x∗∥2.

Why: put t =
2

L+ µ
into max

{
|1− tL|, |1− tµ|

}
:

max

{∣∣∣∣1−
2L

L+ µ

∣∣∣∣ , ∣∣∣∣1−
2µ

L+ µ

∣∣∣∣} = max

{∣∣∣∣−L+ µ

L+ µ

∣∣∣∣ , ∣∣∣∣L− µ

L+ µ

∣∣∣∣} =
L− µ

L+ µ
=

κ− 1

κ+ 1
= 1−

2

κ+ 1
.

▶ If κ = 1, 1− 2

κ+ 1
= 0, and GD converge in 1 step

▶ If κ = 9999, 1− 2

κ+ 1
= 0.999..., and GD converge very slow

Compared with t =
1

L
with

(
1− 1

κ

)k
: let κ = 2, we have

1

2k
vs

1

3k
.

61 / 92

Summary on the convergence rate of GD on (P)

Theorem (Convergence condition of GD)
If step size tk > 0 satisfies the following condition

max
{
|1− tkλmax(Q)|, |1− tkλmin(Q)|

}
< 1 ∀k ∈ N,

the sequence {xk}k∈N produced by GD converges to the minimizer x∗.

And the theorem with different stepsize t :

▶ If t =
1

L
then

∥xk+1 − x∗∥2 ≤
(
1− 1

κ

)k
∥x0 − x∗∥2.

▶ If t =
2

L+ µ
then

∥xk+1 − x∗∥2 ≤
(
1− 2

κ+ 1

)k
∥x0 − x∗∥2.

62 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

63 / 92

Convergence rate of GD on general smooth f

▶ Previously we studied the convergence rate of GD on minimizing

f(x) =
1

2
∥Ax− b∥22.

That is, we restrict f to be the least squares function.

▶ Now we consider general f that is smooth and convex.

▶ We now study the convergence rate of GD on

argmin
x

f(x)

where
▶ f is convex
▶ f is L-smooth: the gradient of f is L-Lipschitz

∥∇f(a)−∇f(b)∥ ≤ L∥a− b∥.

64 / 92

A very important inequality for L-smooth f

▶ If f is L-smooth: the gradient of f is L-Lipschitz

∥∇f(a)−∇f(b)∥ ≤ L∥a− b∥.

Then

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2.

▶ Why and how: see next two pages (reading exercise).

65 / 92

Proof (1/2)

We show for L > 0, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ implies∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣ ≤ L

2
∥y − x∥22.

Recall from calculus G(b)−G(a) =
∫ b

a
g(θ)dθ. Next, a smart step, let g(θ) as

g(τ) = ⟨∇f(x+ τ(y − x)),y − x⟩ be a function in τ and dθ = dτ . Consider the definite integral of g(τ)
from 0 to 1, let G(b) = f(y) and G(a) = f(x), hence

f(y)− f(x) =
∫ 1

0

〈
∇f(x+ τ(y − x)),y − x

〉
dτ

=
∫ 1

0

〈
∇f(x+ τ(y − x))−∇f(x) +∇f(x),y − x

〉
dτ.

As ∇f(x) is independent of τ , can take out from the integral

f(y)− f(x) = ⟨∇f(x),y − x⟩+
∫ 1

0

〈
∇f(x+ τ(y − x))−∇f(x),y − x

〉
dτ.

The idea is to create the term ⟨∇f(x),y − x⟩ so that we can move it to the left and get∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣.
66 / 92

Proof (2/2)

|f(y) − f(x) − ⟨∇f(x),y − x⟩| = |
∫ 1
0
⟨∇f(x + τ(y − x)) − ∇f(x),y − x⟩ dτ |

≤
∫ 1
0

∣∣ ⟨∇f(x + τ(y − x)) − ∇f(x),y − x⟩
∣∣dτ

c.s.
≤

∫ 1
0
∥∇f(x + τ(y − x)) − ∇f(x)∥ · ∥y − x∥dτ.

c.s. means Cauchy – Schwarz inequality.

Now look at ∥∇f(x+ τ(y − x))−∇f(x)∥, this is exactly where we can apply the Lipschitz gradient
inequality

∥∇f(x+ τ(y − x))−∇f(x)∥ ≤ L∥τ(y − x)∥ ≤ L|τ |∥y − x∥ = Lτ∥y − x∥
where ∥τ(y − x)∥ = |τ |∥y − x∥ as norm is non-negative. Note that the integral range is from 0 to 1 so the
absolute sign in τ can be removed.

Lastly ∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣ ≤ ∫ 1

0

Lτdτ · ∥y − x∥2 =
L

2
∥y − x∥2.

Remove the absolute value sign gives

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2.

67 / 92

Meaning of L-smoothness: quadratic upper bound

A function f is L-smooth if for any two points x,y ∈ domf ,
f(y) ≤ f(x) +

〈
∇f(x),y − x

〉
+ L

2 ∥y − x∥22

−4 −2 0 2

0

10

20

y

f
(y
)

f

f(−1) +∇f(−1)(y − (−1)) + L
2 ∥y − (−1)∥

Interpretation: f is globally bounded above by a quadratic function.
i.e. f cannot be “grow too fast” than the quadratic upper bound.

68 / 92

Polyak-Lojasiewicz inequality

▶ A function f : Rn → R that is differentiable (i.e. ∇f(x) exists for x ∈ domf) satisfies
Polyak-Lojasiewicz (PL) inequality if there exists a positive scalar µ > 0 such that

1

2
∥∇f(x)∥2 ≥ µ

(
f(x)− f∗

)
for all x ∈ domf , where f∗ = f(x∗) and x∗ is a minimizer of f .

▶ It means the gradient grows faster than a quadratic function (scaled by a scalar µ > 0) as we move
x away from x∗.

▶ Why an inequality with crazy name suddenly jumps out from nowhere: because it is USEFUL!

▶ Good news: this inequality is true for many many many functions you see in daily life. So you can
assume the f you work with is PL.

69 / 92

Poof of linear convergence of GD

f has L-Lips. grad f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2

GD update xk+1 = xk − 1

L
∇f(xk)

▶ Put y = xk+1, x = xk in the first inequality, then plug in the second equation gives the descent lemma

f(xk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2.

▶ PL inequality: −1

2
∥∇f(xk)∥2 ≤ −µ

(
f(xk)− f∗), so

f(xk+1) ≤ f(xk)−
µ

L

(
f(xk)− f∗).

▶ Subtract both side by f∗

f(xk+1)− f∗ ≤ f(xk)−
µ

L

(
f(xk)− f∗)− f∗ =

(
1− µ

L

)(
f(xk)− f∗).

▶ Recursion:
f(xk+1)− f∗ ≤

(
1− µ

L

)k(
f(x0)− f∗).

70 / 92

Remarks

▶ The proof also applies to optimal stepsize, since

f(xk+1) = min
α
f
(
xk − α∇f(xk)

)
≤ f

(
xk − 1

L
∇f(xk)

)
,

where the ≤ is by definition of the optimal stepsize.

▶ Another approach to show the convergence of GD for smooth-f is to impose f is µ-strongly convex.
The proof is longer and more complicated.

71 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

72 / 92

The convergence analysis of GD is so hard-core!

The convergence analysis of AGD is even more hard-core.

73 / 92

Convergence rates

▶ (One of the) Definition:

ρ := lim
k→∞

f(xk+1)− f∗

f(xk)− f∗
.

What is it: limit of ratio of successive errors.

▶ Convergence rate
▶ ρ = 1: sublinear convergence rate
▶ ρ ∈]0, 1[: linear convergence rate
▶ ρ = 0: super-linear convergence rate

▶ Quadratic convergence rate

lim
k→∞

f(xk+1)− f∗(
f(xk)− f∗

)2 < M,

for some constant M > 0.

▶ Other definition: ∥xk − x∗∥, ∥∇f(xk)∥.

74 / 92

Convergence rate
Recall the observation : different slope =⇒ different convergence rate

In general, for GD, the objective function decrease in the order of O
(1
k

)
.

But for Accelerated gradient, it drops in the order of O
(1

k2

)
!

And it is optimal : you can never do better than O
(1

k2

)
, if you only use gradient information!

75 / 92

Convergence rate of accelerated gradient is a order higher

We have the following rate of GD on solving (P) for the best t =
2

L+ µ
:

∥xk+1 − x∗∥2 ≤
(
1− 2

κ+ 1

)k
∥x0 − x∗∥2.

It can be shown, for accelerated gradient (e.g. the heavy ball method), we have

∥xk+1 − x∗∥2 ≤
(
1− 2√

κ+ 1

)k
∥x0 − x∗∥2.

Example: κ = 2, we have
1

3k
= 0.3333k vs 0.1716k.

For 4 iterations :
GD : 0.33, 0.11, 0.03, 0.01
AGD : 0.17, 0.02, 0.0049, 0.0008

76 / 92

Let’s make it even easier to understand

Original problem :

(P) : given full rank A ∈ Rm×n, b ∈ Rm, find x ∈ Rn by solving

x := argmin
x

f(x) =
1

2
∥Ax− b∥22 =

1

2
x⊤Qx− p⊤x,

where Q = A⊤A, p = A⊤b, L = ∥Q∥2.

To make it easier to understand, set b = 0

(P ′) : given symmetric positive definite Q ∈ Rn×n, find x ∈ Rn by solving

x := argmin
x

f(x) =
1

2
x⊤Qx.

Again, let λmax(Q) = L and λmin(Q) = µ.

77 / 92

Nesterov’s accelerated gradient on (P ′)

(P ′) : given sym. p.d.Q ∈ Rn×n, find x ∈ Rn by x := argmin
x

1

2
x⊤Qx.

The update steps in Nesterov’s AGD with step size t =
1

L
and fixed β

yk+1 = xk − 1

L
Qxk xk+1 = yk+1 + β(yk+1 − yk)

In one line :
xk+1 = xk − 1

L
Q
(
xk + β(xk − xk−1)

)
+ β(xk − xk−1)

=
(
(1 + β)xk − βxk−1

)
− 1

L
Q
(
(1 + β)xk − βxk−1

)
=

(
In − 1

L
Q
)(

(1 + β)xk − βxk−1

)
e.d.
=

(
V V ⊤ − 1

L
V ΛV ⊤

)(
(1 + β)xk − βxk−1

)
V ⊤xk+1 =

(
V ⊤ − 1

L
ΛV ⊤

)(
(1 + β)xk − βxk−1

)
=

(
In − 1

L
Λ
)(

(1 + β)V ⊤xk − βV ⊤xk−1

)
wk+1 =

(
In − 1

L
Λ
)(

(1 + β)wk − βwk−1

)
.

78 / 92

Nesterov’s accelerated gradient method on (P ′)

wk+1 =
(
In − 1

L
Λ
)(

(1 + β)wk − βwk−1

)
,w

[1]
k+1

.

.

.

w
[n]
k+1

 =

([
1

.
.
.

1

]
− 1

L

[
λ1

.
.
.

λn

])(1 + β)

w
[1]
k

.

.

.

w
[n]
k

− β

w
[1]
k−1

.

.

.

w
[n]
k−1


That is, we have the decoupled element-wise expression

w
[i]
k+1 =

(
1− λi

L

)(
(1 + β)w

[i]
k − βw

[i]
k−1

)
=

(
1− λi

L

)
(1 + β)w

[i]
k −

(
1− λi

L

)
βw

[i]
k−1, i = 1, 2, ..., n

(* Recall AGD reduces to GD if β = 0, this expression also applies to GD)

79 / 92

Second-order dynamical system

w
[i]
k+1 =

(
1− λi

L

)
(1 + β)w

[i]
k −

(
1− λi

L

)
βw

[i]
k−1, i = 1, 2, ..., n

The characteristic equation is

r2 =
(
1− λi

L

)
(1 + β)r −

(
1− λi

L

)
β.

The value β = β∗ that the equation has repeated roots are

β∗
i=1,2 =

1−
√
λi/L

1 +
√
λi/L

, r(β∗) = 1−
√
λi/L.

If β ≤ β∗ the equation has two distinctive real roots.
If β > β∗, the equation has two complex roots.

80 / 92

The characteristic equation r2 =
(
1− λi

L

)
(1 + β)r −

(
1− λi

L

)
β.

At the value β∗, the equation has repeated roots

β∗
i=1,2 =

1−
√

λi/L

1 +
√

λi/L
, r(β∗) = 1−

√
λi/L.

▶ β = β∗

▶ Best β
▶ Best amount of momentum
▶ System is critically damped

▶ β ≤ β∗

▶ β too small
▶ Not enough momentum
▶ System is over-damped

▶ β > β∗

▶ β too high
▶ Too much momentum
▶ System is under-damped
▶ System is oscillatory

The acceleration comes from damping!!
81 / 92

The periodic ripples is due to β > β∗

When β > β∗, the system is under-damped =⇒ the periodic ripples

In fact we have

w
[i]
k = c

[i]
1

(
β
(
1− λi

L

))k/2
cos(kψ[i] − c

[i]
2)

where c1,2 are some unimportant constants and

ψ[i] = cos−1
((

1− λi
L

)1 + β

2

√
β
(
1− λi

L

))
≈
√
λi
L
, ψ[i] ≈

√
λmin

L
=

√
κ−1

(Detail derivations : take home exercise)
82 / 92

Table of Contents

Introduction & preliminaries

Gradient Descent as an iterative algorithm

Gradient Descent is slow when level set is elliptic

Accelerated gradient method

Nonnegative least squaress

Adaptive restarts

Convergence rate of Gradient Descent on (P)

Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality

Convergence rate of accelerated gradient method on (P)

Convergence of accelerated gradient method explained using ODE

83 / 92

Nesterov’s accelerated gradient
▶ One of the form of Nesterov’s accelerated gradient using Paul Tseng’s parameter1

xk+1 = yk − tk∇f(yk)

yk+1 = xk+1 +
k

k + 3
(xk+1 − xk)

▶ Theorem: if f is convex and L-smooth, picking stepsize tk =
1

L
, the Nesterov’s accelerated

gradient has the convergence rate as

f(xk)− f∗ ≤ c∥x0 − x∗∥
(k + 1)2

,

where c is some (unimportant) constant.

▶ The accelerated gradient actually associated to an ODE

Ẍ +
3

τ
Ẋ +∇f(X) = 0,

which we will show it in the coming slides.
1This is NOT the one proposed by Nesterov in 1983.

84 / 92

Derive the ODE ... (1/4)
▶ Accelerated gradient (constant stepsize)

xk+1 = yk − t∇f(yk), yk+1 = xk+1 + βk(xk+1 − xk)

so yk = xk + βk−1(xk − xk−1), put it to the gradient step gives

xk+1 = xk + βk−1(xk − xk−1) − t∇f(yk)
⇐⇒ xk+1 − xk = βk−1(xk − xk−1) − t∇f(yk).

Why do this: 1) to cancel the yk and 2) get difference terms such as xk+1 − xk−1.

▶ We now have
xk+1 − xk√

t
= βk−1

xk − xk−1√
t

−
√
t∇f(yk). (ode1)

Our goal: derive an ODE from (ode1).
How: link discrete iteration with continuous time.

▶ Let k =
τ
√
t

: discrete iteration =
continuous time

stepsize
so

X(τ) = X(k
√
t) ≈ xk, X(τ + 1 ·

√
t) = X

(
(k + 1)

√
t
)
≈ xk+1,

and the “≈” becomes “=” if we take lim
t→0

.

We also have
xk+1 − xk√

t
≈

X(τ +
√
t) − X(τ)
√
t

,
xk − xk−1√

t
≈

X(τ) − X(τ −
√
t)

√
t

85 / 92

Derive the ODE ... (2/4)
▶ Recall Taylor’s series

u(x0 + ∆x) = u(x0) + ∆x
∂u

∂x

∣∣∣
x=x0

+
(∆x)2

2!

∂2u

∂2x

∣∣∣
x=x0

+ o(∆x).

Let u = X, x0 = τ , ∆x =
√
t and

∂u

∂x
=

∂X

∂τ
= Ẋ then

X(x0 + ∆x) = X(τ) +
√
tẊ(τ) +

t

2
Ẍ(τ) + o(

√
t).

▶ So
xk+1 − xk√

t
≈

X(τ +
√
t) − X(τ)
√
t

becomes
xk+1 − xk√

t
= Ẋ(τ) +

√
t

2
Ẍ(τ) + o(

√
t).

▶ Similarly, using Taylor’s expansion on u(x0 − ∆x) with ∆x = −
√
t, we get

X(x0 − ∆) = X(τ) −
√
tẊ(τ) +

t

2
Ẍ(τ) + o(

√
t),

so xk−xk−1 ≈ X(τ)−X(τ −
√
t) and

xk − xk−1√
t

= Ẋ(τ) −
√
t

2
Ẍ(τ) + o(

√
t).

Put them into (ode1)

Ẋ(τ) +

√
t

2
Ẍ(τ) + o(

√
t) = βk−1

(
Ẋ(τ) −

√
t

2
Ẍ(τ) + o(

√
t)

)
−

√
t∇f(yk).

86 / 92

Derive the ODE ... (3/4)

▶ We have

Ẋ(τ) +

√
t

2
Ẍ(τ) + o(

√
t) = βk−1

(
Ẋ(τ) −

√
t

2
Ẍ(τ) + o(

√
t)

)
−

√
t∇f(yk).

Rearrange √
t

2
(1 + βk−1) Ẍ(τ) + (1 − βk−1) Ẋ(τ) +

√
t∇f(yk) + o(

√
t) = 0.

▶ For yk, as xk = yk in the long run, we can take yk = X(τ).

√
t

2
(1 + βk−1) Ẍ(τ) + (1 − βk−1) Ẋ(τ) +

√
t∇f

(
X(τ)

)
+ o(

√
t) = 0.

▶ Hide τ in X √
t

2
(1 + βk−1) Ẍ + (1 − βk−1) Ẋ +

√
t∇f(X) + o(

√
t) = 0.

▶ What next: time to plug in βk.

87 / 92

Derive the ODE ... (4/4)

▶ If βk =
k

k + 3
then βk−1 =

k − 1

k + 2
and

k − 1

k + 2
= 1 −

−3

k + 2

k≫2
≈ 1 −

3

k

k=
τ
√
t

= 1 −
3
√
t

τ
.

Then 1 + βk−1 = 2 −
3
√
t

τ
, 1 − βk−1 =

3
√
t

τ

√
t

2

(
2 −

3
√
t

τ

)
Ẍ +

3
√
t

τ
Ẋ +

√
t∇f(X) + o(

√
t) = 0.

▶ Divide the whole equation by
√
t (

1 −
3
√
t

2τ

)
Ẍ +

3

τ
Ẋ + ∇f(X) + o(

√
t) = 0.

Take lim
t→0

gives Ẍ +
3

τ
Ẋ + ∇f(X) = 0.

88 / 92

Review of the derivation
▶ Step-1. Nesterov’s accelerated gradient gives

xk+1 − xk√
t

= βk−1
xk − xk−1√

t
−

√
t∇f(yk).

▶ Step-2. Apply Taylor’s approximation

√
t

2
(1 + βk−1) Ẍ + (1− βk−1) Ẋ +

√
t∇f(X) + o(

√
t) = 0.

or
1 + βk−1

2
Ẍ +

1− βk−1√
t

Ẋ +∇f(X) + o(
√
t) = 0.

▶ Step-3. Plugin βk−1 and take limit t→ 0

Ẍ +
3

τ
Ẋ +∇f(X) = 0.

89 / 92

About the βk =
3

k + 3

▶ It is instrumental such that taking limit t→ 0 will not cancel Ẍ or blow up the ODE.

▶ Selection of βk =
3

k + 3
is legit because it satisfies

1− βk+1

β2
k+1

≤ 1

β2
k

.

90 / 92

Convergence rate using ODE

▶ ODE

Ẍ(τ) +
3

τ
Ẋ(τ) +∇f

(
X(τ)

)
= 0.

▶ Standard ODE theory gives

f
(
X(τ)

)
− f∗ ≤ O

(1

τ2

)
.

▶ As ODE ⇐⇒ Nesterov’s accelerated gradient, so this (partially) explains

f(xk)− f∗ ≤ c∥x0 − x∗∥
(k + 1)2

.

91 / 92

After stories / What is not discussed

▶ The proof of convergence of AGD for general problem
https://angms.science/doc/CVX/CVX_NAGD.pdf

https://angms.science/doc/CVX/CVX_NAGDalpha.pdf

https://angms.science/doc/CVX/fista_convergence.pdf

▶ Is AGD really always good?
AGD is not suitable when gradient has noise.
In other words, AGD scarifies robustness for speed.

▶ Extension to other gradient scheme
Accelerated Stochastic Gradient Descent
Accelerated Primal-Dual Gradient

▶ Extension to other model
What about min

x
∥Ax− b∥1: non-smooth optimization.

What about f non-convex: current research topics.

▶ What actually leads to the acceleration?
ODE, Variational perspective, principle of least action, damped Lagrangian ... in the most recent research
within last 7 years!

C’est bon bon. End of lecture

92 / 92

https://angms.science/doc/CVX/CVX_NAGD.pdf
https://angms.science/doc/CVX/CVX_NAGDalpha.pdf
https://angms.science/doc/CVX/fista_convergence.pdf

	Introduction & preliminaries
	Gradient Descent as an iterative algorithm
	Gradient Descent is slow when level set is elliptic
	Accelerated gradient method
	Nonnegative least squaress
	Adaptive restarts
	Convergence rate of Gradient Descent on (P)
	Convergence rate of GD on smooth f via Polyak-Lojasiewicz inequality
	Convergence rate of accelerated gradient method on (P)
	Convergence of accelerated gradient method explained using ODE

